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OVERVIEW 

 

This is the Final Report of the Project 

Driver Models for Both Human and Autonomous Vehicles with Different Sensing 
Technologies and Near-crash Activity 

Project Lead: Umit Ozguner 

Director, University Transportation Center (UTC)  
Professor, Department of Electrical & Computer Engineering 
Transportation Research Center (TRC) Inc. Chair on Intelligent Transportation Systems (ITS)  
Email: ozguner.1@osu.edu 
Office: 614-292-5940 Fax: 614-292-7596 
205 Dreese Laboratories; 2015 Neil Avenue, Columbus OH, 43210 
 

Other Investigators: Donald Fisher (UMass), Abdollah Homaifar (NCA&T), John Lee (UW), 
David Woods (OSU) 

Project Description 

The goal of this project was to understand how multi-agent models of the driver and vehicle can 
inform design principles for optimized autonomous vehicle systems. In this project, a 
computational model for human behavior in pre-crash scenarios was developed and investigated. 

A multi-agent model with both human drivers and autonomous and semi-autonomous vehicles was 
considered. The model was build upon successful models used in our Defense Advanced Research 
Projects Agency (DARPA) Grand Challenge vehicles, and also incorporates results from our 
experience in automotive industry project. This model takes dynamic inputs about the changing 
situation and behavior of others, and uses mathematical or symbolic processing to carry out the 
functions required to simulate the perception, attention, cognition, and control behavior of interest. 
We integrate different component models, including control theory models, decision and judgment 
models; learning classifier systems, joint human-automation system models, and attention models, 
to build a comprehensive model needed to make predictions in pre-crash situations, and needed to 
make quantitative estimates of hypothesized safety improvements. 

These models have especially been used for investigating lane-change and merge type of activities, 
where crashes can occur. We have also considered convoy type of operations, a phenomena that 
we expect to be of increasing importance as driverless fleets become a possibility in the near future.  

A number of researchers in the Consortium have contributed to the regular joint discussions held. 
The majority of the activity under this Project was concentrated at OSU and NC A&T, and the 
Project Report combines two Chapters, summarizing the activities at both locations. 



1 
 

Driver Models for both Human and 
Autonomous Vehicles Activity-1 
 
 
Authors: 
 
Arda Kurt (kurta@ece.osu.edu) 
 
Umit Ozguner (ozguner.1@osu.edu) 
 
Peng Liu (liupbit@gmail.com ) 
 
 
  

mailto:kurta@ece.osu.edu
mailto:ozguner.1@osu.edu
mailto:liupbit@gmail.com


2 
 

 
 

1. Introduction 

OSU CrIS UTC researchers are investigated different ways of capturing driver behavior in 

computational and functional models. The purpose of developing these models was to provide a 

means of understanding and quantifying human driving behavior for the computational aspects of 

current and future transportation systems, ranging from Advanced Driver Assistance Systems 

(ADAS) to partial/full automation applications. 

There are multiple viable methodologies in modeling the decision-making and low-level driving 

aspects of the various tasks that are undertaken by human drivers. Earlier studies (Liu2007) in 

cognitive driving models mostly utilized the division of various subtasks such as perception, 

implementation and decision-making that operate concurrently during regular human driving. One 

example illustration of such a cognitive model can be seen below. 

 

Figure 1. Human Driver Model 

The most recent, CrIS-funded effort at OSU was a continuation of the earlier efforts on capturing 

parts of this driver model in Hybrid-State Systems (HSS) and probabilistic state machines 
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(Kurt2010). These earlier models dealt specifically with intersection approach scenarios, as 

illustrated below, and involved ad-hoc models tested and verified with real driving data. 

 

Figure 2. Intersection approach decisions 

The driver modeling effort as part of CrIS was carried out in two parallel tracks. OSU researchers 

investigated probabilistic models of decision for crash-imminent scenarios through Hidden 

Markov Models (HMM) and Hierarchical Hidden Markov Models (HHMM), which have shown 

promise in both capturing driver modes/intents, and also factoring in stochastic nature of such 

decisions. On the other hand, NCAT researchers investigated Support Vector Machines (SVM) 

and fuzzy models for a similar purpose.  

Common to both of the above-mentioned research tracks is a need for real or realistic driving data 

covering relevant scenarios. Early on, a number of larger-scale data collection efforts such as VTTI 

100-Car Naturalistic Driving Study and NHTSA SHRP2 were explored as candidate data sources. 

Since the publicly available portion of the 100-Car study is de-identified (GPS locations and other 

pieces of information stripped off), and the SHRP2 data took considerable time being processed, 

our initial attempts at identifying useful driving data has focused on our internal resources. For 

this purpose, data collected with an instrumented OSU research vehicle for an earlier project was 

examined to pinpoint near-crash situations. Even though this data set is not extensive as the above-
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mentioned naturalistic driving studies, it provided a starting point for the initial model-building 

efforts and help get our group of researchers from multiple institutions onto the same page. 

The rest of this report is organized into specific studies that were carried out under Project 2, with 

brief overviews and representative illustrations from the publications generated as part of CrIS 

UTC effort. 

 

2. Prediction 
a. Trajectory Prediction Using Driver Models 

In (Peng2014), OSU researchers focused on accurate trajectory prediction of a lane-changing 

vehicle as the main application for driver modeling and estimation. This is a key issue for risk 

assessment and early danger warning in advanced driver assistance systems(ADAS). The 

particular study presented in (Peng2014) proposed a trajectory prediction approach for a lane 

changing vehicle considering high-level driver status.  

 

Figure 3. Lane change scenario description and process partition. 
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A driving behavior estimation and classification model was developed based on Hidden Markov 

Models(HMMs). The lane change behavior was estimated by observing the vehicle state emissions 

in the beginning stage of a lane change procedure, and then classified by the classifier before the 

vehicle crosses the lane mark.  

Furthermore, the future trajectory of the lane changing vehicle was predicted in a statistical way 

combining the driver status estimated by the classifier. The classifier was trained and tested using 

naturalistic driving data, which shows satisfactory performance in classifying driver status. The 

trajectory prediction method generated different trajectories based on the classification results, 

which is important for the design of both autonomous driving controller and early danger warning 

systems. 

The overall framework for the trajectory predictor is modeled as a combination of Hybrid-State 

Systems, and Hidden Markov Models. The hybrid framework, shown below, consists of three 

parts: the hybrid system representing the driver/vehicle dynamic of the lane changing vehicle 

(target vehicle); the driver behavior classifier estimating the current driver status of the target 

vehicle; and the trajectory prediction module generating the future vehicle trajectories of the 

cutting-in stage. The driving behavior classifier takes the vehicle state emission from the target 

vehicle and calculate the probabilities of two HMM models representing normal and dangerous 

driving behavior, respectively. The trajectory prediction module generates the statistic trajectory 

based on the real lane-change data set when considering the driver behavior classification result. 



6 
 

 

Figure 4. Lane change trajectory prediction framework, this framework assumes that the state 

emissions of the cut-in vehicle could be observed via V2V network or sensors mounted on the host 

vehicle. 

In order to know whether a driver is under dangerous driving, it is essential to get the driver’s 

current decision state. However, it’s difficult to directly estimate the current high-level driving 

states using a hybrid state system. To solve this problem, the high-level driver state transition is 

formulated as a stochastic process and is estimated using HMM by considering the historical states 

and emissions. A Hidden Markov Model (HMM) can be expressed as a tuple λ = {N,M,π,T,e}, 

which consists of a series of N discrete hidden states and the corresponding observations for each 

state, as illustrated below. The observations are dependent on the hidden states, and each state has 

a probability distribution over each possible output. An HMM expresses the driver/vehicle 

dynamic system in a stochastic way properly while eliminating the low-level vehicle dynamic 

evolution. In addition, the modeled system will be in one of the states at any given time k, and the 

hidden states are the same as that of the finite state machine in HSS. 
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Figure 5. A Diagram of the Hidden Markov Model 

For the classifier, two HMM models are trained using Expectation Maximization (EM) method, 

one model for normal driving, and the other for dangerous driving. The data of the lane changing 

vehicle obtained from the observation interval are tested in both HMM models, and the conditional 

probabilities P(x|λi) are calculated using forward algorithm. The classification result is computed 

by comparing the probabilities returned from the two HMMs, as shown below. Further vehicle 

trajectory prediction is conducted in a statistical way based on the classification results. 

 

Figure 6. HMM-based classifier 

Given the driving behavior classification results of a lane changing vehicle, the following vehicle 

trajectory can be predicted in a statistical way using the correlated driving data set. The predicted 

absolute trajectory offset with 50 and 85 percentage for both normal and dangerous driving are 
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shown below along with absolute offsets of the real trajectories. To use the obtained driving data 

reasonably, the longitudinal traveling speed range for the data samples are set from 20 m/s to 30 

m/s. While a smaller speed range division can make the lane change data more consistent, too 

small speed range could cause excessive screening of the driving data, which causes a demand for 

very large data sets. The results below shows that the dangerous lane change absolute trajectory 

offsets have larger variances comparing with the normal lane change instances, which corresponds 

to the statistical results in section V-A. In addition, the 50 percentage and 85 percentage absolute 

trajectory offsets have large differences for both normal and dangerous lane change cases. 

 

Figure 7. Absolute trajectory offset prediction for both normal and dangerous driving. 

b. Decisive Features 

Continued work along the HMM-based classification lines, presented in (Liu2015Classification), 

introduced the concept of “decisive features.” These are features that are more likely to appear in 

dangerous lane change processes. A feature detection module was proposed specifically 

considering decisive features correlated to dangerous lane change. Furthermore, the feature 

detection module was integrated into the HMM classifier to enhance classification ability. The 
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proposed classifier was verified with a separate test data set, and showed satisfactory results in 

reducing false negative rate of misclassification. 

The system framework for this more complex classifier is given in the figure below. The system 

structure of the driver behavior classifier is developed in a cascade form, as shown in Figure 2. 

The behavior classifier consists of a prior data filtering module, a maneuver predictor, a behavior 

classifier, and a posterior feature detection module. The maneuver predictor consists of several 

HMMs of which each state for one driver maneuver, e.g. move forward, turn left, change lane, 

etc., in the given traffic context. In general, the maneuver predictor is a nonlinear function that 

maps from the observation sequence of vehicle states to a driver maneuver. 

 

Figure 8. System framework of the behavior classifier with decisive driving feature detection. 

Using Gaussian observation emission models, the HMM classifier is utilized as shown below. In 

general, driver states of the target vehicle during the first stage of lane change, i.e. stage before the 

target vehicle crossing lane mark, are denoted by the N hidden states of an HMM. A driver is 

assumed to be within one of these states during this stage. The vehicle state measurements of this 

stage is treated as the emission sequence of the hidden regime states generated by the driver. With 

this expression, HMMs representing normal and dangerous lane changes could be trained using 

labeled driving data, respectively. With the two trained HMMs, for an observed vehicle state 

sequence, the classification result is given by comparing how well the given models fit the 

observation sequence. The behavior classification problem under the HMM modeling is then 

turned into identifying the most likely hidden regime sequence using the observed emission 

sequence. 
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Figure 9. HMM applied to model driver-vehicle interaction in highway lane change behavior 

classifier. 
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3. Control 

a. Model Predictive Control Using Lane Change Behavior Models 

Expanding the classification and prediction work into a driver-model-aware controller, in the study 

(Liu2015Predictive) a model predictive control approach was proposed for a vehicle convoy 

traveling on homogeneous highway. Specifically, the lane change behavior of a cut-in vehicle in 

front of the vehicle convoy was estimated and predicted for the predictive control of the leading 

vehicle in the convoy. In order to capture state differences of the preceding vehicle in different 

lane change manners, a cost function considering riding comfort and spacing safety was designed 

for the leading vehicle based on the free headway set ahead. The proposed cost function integrated 

trajectory differences of the cut-in vehicle, which makes the controller sensible to different lane 

change manners. The space keeping and velocity tracking performance of the controller was tested 

and compared with a conservative controller under different lane change behavior of the cut-in 

vehicle. Furthermore, the control effects on the spacing and velocity of the followers in the convoy 

were analyzed. The simulation results showed that the controller considering lane change behavior 

difference has smaller velocity and spacing fluctuations dealing with lane change disturbance. 

 

Figure 10. Vehicle convoy formation with a preceding cut-in vehicle, assuming convoy members 

have V2V communication. 
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For this Cooperative Adaptive Cruise Control (CACC) setting, the vehicle convoy is formed by 

one leader (the host vehicle) and m followers. All the followers in the convoy try to keep a 

preferred traveling velocity while keeping certain spacing df to the vehicle in front of it. The host 

vehicle also needs to maintain desired velocity and free spacing in front of it, and deal with sudden 

cut-in events, as shown below. Here we focused on the scenario when a lane changing vehicle cuts 

in front of the host vehicle coercively. In this scenario, only the vehicles in the lane change 

behavior classification zone of the adjacent lane are of interest. In order to control the host vehicle 

in a predictive way, the vehicle state of the cut-in vehicle, xc, is needed. Specifically, the future 

position and velocity of the cut-in vehicle is got by predicting its future trajectory after crossing 

the lane mark. The high-level lane change behavior is considered in the trajectory prediction. 

The behavior-aware Model Predictive Controller (MPC) was compared to a more conservative 

MPC, and the effects of the cut-in vehicle on the convoy host were comparatively analyzed, as 

briefly illustrated below. 

  

Figure 11. Longitudinal distance and velocity of the host vehicle (left), Force input of the host 

vehicle (right). 

The tracking performance of the three followers in the convoy is also analyzed. The figure below 

shows the velocity profiles of the three followers when the host vehicle is using different tracking 

strategies. The velocity profiles of the followers have smaller fluctuations when the host vehicle 

uses the controller that predicts the trajectory of the preceding cut-in vehicle considering lane 
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change behavior prediction results. Furthermore, the followers avoid velocity overshoot when the 

host vehicle considers the lane change behavior difference of the cut-in vehicle. 

 

Figure 12. Longitudinal velocities of the followers in the convoy when the host vehicle is using 

different tracking strategies. 

 

Figure 13. Distance to the preceding vehicle, with the shadowed region states for the lane change 

process of the preceding vehicle. 
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The CACC setting and the MPC controller were further studied in (Liu2017Synthesis), with the 

development of a nonlinear bound to state the performance of the proposed controller. Simulations 

of a cut-in scenario were conducted using the CarSim simulation environment to show the 

effectiveness of the proposed controller, as snapshot below. 

 

Figure 14. Screenshots of the test scenario in CarSim, the white vehicle is the cut-in (target) 

vehicle, the dark vehicle is the lead vehicle of a convoy. 

Most recently, a Distributed Model Predictive Control methodology was developed and presented 

in (Liu2017Distributed). The method takes into account macroscopic traffic management and 

microscopic vehicle dynamics to achieve efficiently cooperative highway driving. Critical traffic 

information beyond the scope of human perception is obtained from connected vehicles 

downstream to establish necessary traffic management mitigating congestion. With 

backpropagating traffic management advice, a connected vehicle having an adjustment intention 

exchanges control-oriented information with immediately connected neighbors to establish 

potential cooperation consensus, and to generate cooperative control actions. The performance of 

the distributed control scheme and the energy-saving potential of conducting such cooperation are 

tested in a mixed highway traffic environment by the means of microscopic simulations. 
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INTRODUCTION  
The North Carolina Agricultural and Technical (N.C A & T) state university team was 

involved in both project 2 and project 3. Our goal in project 2 was to understand how multi-agent 
models of the driver and vehicle can inform design principles for optimized autonomous vehicle 
systems. In this project, we have developed and refined a computational model for human 
behavior in pre-crash scenarios. Our team also focused on using machine-learning tools to 
improve the performance of Advanced Driver Assistance Systems (ADASs). We studied the 
sensitivity of previously developed Hidden Markov driver models to increase the accuracy of the 
developed models. Moreover, Support Vector Machine models are developed for normal and 
dangerous driving that help the controller plan safe maneuvers, as well as create a basic situational 
awareness of the surrounding vehicles.  

Trajectory planning is the final stage of the four-hierarchal-class motion planning platform, 
which is first suggested in [1] for the autonomous on-road driving. In order to directly apply the 
output of our computational model for human behavior into the motion-planning task, we 
expanded our research by investigating a novel trajectory-planning framework in which we 
employ the extracted knowledge from the human driver behavioral model. In our framework, we 
proposed a general problem formulation in which the surrounding environment’s limitations and 
any future estimated trajectory of other traffic participants can be formulated as inequality 
constraints on vehicle kinematic model configurations to guarantee the safe maneuverability of 
the motion task. 

References 
[1]  P. Varaiya, "Smart Cars on Smart Roads: Problems of Control," IEEE Transactions on 

Automatic Control, vol. 38, no. 2, pp. 195-207, 1993.  
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RESEARCHES UNDER PROJECT 2: DRIVER MODELS FOR 
BOTH HUMAN AND AUTONOMOUS VEHICLES 

1. Modeling Drivers’ Actions at Intersections 
The capability to estimate a driver's intention leads to the development of advanced driver 

assistance systems that can assist the drivers in complex situations. Developing precise driver 
behavior models near intersections can considerably reduce the number of accidents at road 
intersections. 

 
Figure 1: A simple intersection scenario. Given the right of way is for the. 

Several models of driver behavior in different scenarios are developed by the team at N.C A 
& T.  These models are based on Support Vector Machines (SVM), Hidden Markov Models 
(HMM) and Takagi-Sugeno (TS) Fuzzy models, and they are able to estimate a driver’s intention 
at an intersection. 

A model combining Support Vector Machine (SVM) and Hybrid State System (HSS) is 
developed for driver behavior estimation near intersections. It provides accurate results that 
perform close to that of a human observer. This work combines the HSS framework with multi-
class SVM based on statistical feature extraction. The statistical feature extraction enables the 
SVM to represent the historical information as the HMM represents sequence. A one-vs-one multi-
class SVM classification method with the RBF kernel is used here. The proposed method is also 
compared with HMM based on HSS in estimating the state of the driver at an intersection. In many 
applications, SVM outperforms HMM in generalizing the pattern recognition problems. Also, the 
SVM has shown a higher performance rate above 97% is achieved in driver behavior estimation 
near an intersection. 

In another study, a fuzzy based modeling technique is introduced for estimation of driver 
behavior at intersections. The required observations for modeling are velocity, acceleration and 
yaw-rate which are selected according to vehicle motion equations. In the proposed method, 
velocity and yaw rate are nonlinear functions of their values at one and two-time steps before. 
These nonlinear functions are approximated with local Takagi-Sugeno models using a Gath-Geva 
fuzzy clustering technique. The model is trained and then tested with naturalistic driving data from 
the OSU. The simulation results show that the model has a good estimation performance. One of 
the contributions of this fuzzy technique is its consideration of the order of the data in time-series, 
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as it employs a second order difference equation for the maneuver contrary to other classification 
techniques. The SVM and k nearest neighbor only consider data point by point without any order. 
These modifications have resulted in more accuracy and less computationally expensive 
estimations. The next contribution in this study is the two step evaluation process. First it 
eliminates the stopping intent, and later determines the trajectory (straight, right or left). The 
implementation of this process reduces the computational complexity by reducing the unnecessary 
estimation of the driver’s direction if he/she is stopping first. Consequently, the reaction time can 
be reduced in situations that everyone follows traffic regulations. 
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2. Personalized Automated Highway Driving System 

The technology of automated driving has improved significantly over the last two decades. 
Vehicles implemented with some partial automation systems such as adaptive cruise control are 
already in existence, and there are several fully automated vehicles in the prototype stage. 

One of the most popular scenarios in the autonomous driving field is highway driving. 
However, because of the high speed, there are many latent hazards on highways that will result in 
significant loss. Thus far, the partial and full autonomy available in vehicles are designed based 
on the system engineers’ knowledge, with the focus on safety. But to increase the confidence in 
autonomous vehicles, they must be able to cater to the individual needs of drivers and satisfy 
different styles. 

In this study, a path-planning framework for autonomous highway driving is proposed which 
performs according to an individual driver’s preference. The proposed system can switch between 
different highway driving maneuvers and plan safe trajectories for all stated maneuvers while 
considering the driver’s satisfaction. The control system implemented on the system ensures the 
safety of the vehicle, however, there are some situations in which various drivers behave 
differently. For instance, in semi-congested traffic, less aggressive drivers prefer to remain in the 
same lane and follow the lead vehicle while more aggressive drivers prefer to alternate between 
lanes. The novel algorithm proposed in this study can make decisions about such arbitrary 
maneuvers with the driver’s preference in mind. 
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Figure 2: Summary of the personalized highway driving system. 

The proposed system consists of a RF-based driver model, which estimates the driver’s 
preferred acceleration with respect to the vehicle’s features and traffic conditions. Another 
component of this system is a model predictive controller, which tracks the desired acceleration 
while maintaining safety constraints. In addition, a one-class SVM classifier is trained with the 
driver’s lane change history and is able to identify satisfactory lane change trajectories. We 
propose a novel decision-making algorithm in this work, which employs the driver model, the 
controller and the lane change inspector and results in a personalized maneuver decision and 
trajectory. 

All the components of the system are tested separately and together and, the results showed 
the accurate and rational performance of the proposed system. The comparison results with a 
personalized adaptive cruise controller and a general MPC controller also showed the superior 
performance of the proposed system. An example of the car following performance of the proposed 
system is shown below. Based on the results, Driver A usually prefers a higher speed given a 
certain inter vehicle gap compared to Driver B. It can be concluded that Driver A is relatively more 
aggressive than Driver B. Moreover, the results confirm that different drivers react differently in 
various scenarios and this system is able to detect the difference in style and follow that while 
ensuring the safety of the vehicle. 
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Figure 3: Car following behavior of the two drivers in personalized highway driving. 

 

3. A Simplified Matrix Formulation (SMF) for Sensitivity Analysis of Hidden 
Markov Models (HMMs) 
Sensitivity analysis is a general technique for investigating the robustness of the output of a 

system model. Sensitivity analysis of probabilistic networks has recently been studied extensively. 
This has resulted in the development of mathematical relations between a parameter and an output 
probability of interest and methods for establishing the effects of parameter variations on 
decisions. Sensitivity analysis in HMMs has usually been performed by taking small perturbations 
in parameter values and re-computing the output probability of interest. As recent studies show, 
the sensitivity analysis of an HMM can be performed using a functional relationship that describes 
how an output probability varies as the network’s parameters of interest change. To derive this 
sensitivity function, existing Bayesian network algorithms have been employed for HMMs. These 
algorithms are computationally inefficient as the length of the observation sequence and the 
number of parameters increases. Our goal in this research was to propose a simplified efficient 
matrix-based algorithm for computing the coefficients of the sensitivity function for all hidden 
states and all-time steps. 

In this research, we proposed a sensitivity analysis algorithm for HMMs using a simplified 
matrix formulation directly from the model representation based on a recently proposed technique 
called the Coefficient-Matrix-Fill procedure [8]. Until recently, sensitivity analysis in HMMs has 
been performed using Bayesian network sensitivity analysis techniques. The HMM is represented 
as a dynamic Bayesian network unrolled for a fixed number of time slices, and the Bayesian 
sensitivity algorithms are used. However, these algorithms do not utilize the HMMs’ recursive 
probability formulations. In this work, a simple algorithm based on a simplified matrix formulation 
is proposed. In this algorithm, to calculate the coefficients of the sensitivity functions, a series of 
forward matrices 𝐹𝐹𝑘𝑘.𝑘𝑘 = 1. … . 𝑡𝑡. are used, where 𝑘𝑘 represents the time slice in the observation 
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sequence. The matrices (Initial, Transition, and Observation) where the corresponding model 
parameter 𝜃𝜃  varies are decomposed into the parts independent of and dependent on θ for 
mathematical convenience. This enables us to compute the coefficients of the sensitivity function 
at each iteration in the recursive probability expression and implement the algorithm in a computer 
program. These matrices are computed based on a proportional co-variation assumption. The 
Observation Matrix 𝑂𝑂 is represented as 𝑛𝑛 ×  𝑛𝑛 diagonal matrices 𝑂𝑂 𝑡𝑡whose vth diagonal entry is 
𝑃𝑃(𝑦𝑦𝑒𝑒𝑡𝑡|𝑥𝑥𝑣𝑣𝑡𝑡) for each state 𝑣𝑣 and whose other entries are 0 at the time 𝑡𝑡 of the observation sequence.  

The computational complexity of our method is linear time, 𝑂𝑂(𝑙𝑙), where 𝑙𝑙 is the length of the 
observation sequence, whereas the Coefficient-Matrix-Fill procedure is quadratic time, 𝑂𝑂(𝑙𝑙2). In 
our method, the sensitivity function coefficients are computed in 𝑜𝑜𝑛𝑛𝑜𝑜 𝑓𝑓𝑜𝑜𝑓𝑓 𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙 that runs for the 
length of the observation sequence, whereas in the Coefficient-Matrix-Fill procedure 
𝑡𝑡𝑡𝑡𝑜𝑜 𝑛𝑛𝑜𝑜𝑛𝑛𝑡𝑡𝑜𝑜𝑛𝑛 𝑓𝑓𝑜𝑜𝑓𝑓 𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙𝑛𝑛 are used. It computes the sensitivity coefficients in the forward matrices 
element-by-element in the 𝑖𝑖𝑛𝑛𝑛𝑛𝑜𝑜𝑓𝑓 𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙, which runs in increasing time up to the maximum of the 
length of the observation sequence, and the 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑓𝑓 𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙 runs for the length of the observation 
sequence. 

 
 

Figure 4: Time in seconds to compute the sensitivity coefficients for an observation sequence length from 1 to 1000 with a step 
size of 10. 

This research has shown that it is more efficient to compute the coefficients for the HMM 
sensitivity function directly from the HMM representation. The proposed method exploits the 
simplified matrix formulation for HMMs. A simple algorithm is presented which computes the 
coefficients for the sensitivity function of filtering and smoothing probabilities for transition, initial 
and observation parameter variation for all hidden states, as well as all time steps. This method 
differs from the other approaches in that it neither depends on a specific computational architecture 
nor requires a Bayesian network representation of the HMM. 
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The future extension of this work will include sensitivity analysis of predicted future 
observations 𝑙𝑙(𝑦𝑦𝑒𝑒𝑡𝑡|𝑦𝑦𝑒𝑒1:𝑇𝑇)(𝜃𝜃). 𝑡𝑡 >  𝑇𝑇 , and the most probable explanation for the corresponding 
parameter variations. Future research on the sensitivity analysis of HMM, where different types of 
model parameters are varied simultaneously, as well as the case of continuous observations will 
be considered.  
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4. Novel kinematic-based Framework for Autonomous Ground Vehicle 

Trajectory Planning Using the Variational Approach 
Trajectory planning is seen as a key component for the emerging autonomous vehicles as it 

provides safe maneuver and dynamically feasible trajectory for the vehicle's control system. 
Depending on the application, the trajectory planning algorithms are generally divided into two 
main categories. First, the kinematic based algorithms are developed for the low speed scenarios 
where the wheel-road slippage is not an important factor. On the other hand, the dynamic models 
are capable of accounting for more factors, such as side-slip angle, tire forces, and moment of 
inertia, which makes them especially suitable for the high speed and harsh road conditions. While 
the dynamic models are more general in nature, they demand for concurrent estimation of many 
unknown and random variables, such as wheels’ friction, stiffness, and mass. Consequently, they 
suffer from high computational complexity and impose significant overhead to the autonomous 
vehicle control system. 

To take advantage of the generality of the dynamic-based algorithms as well as the simplicity 
and efficiency of the kinematic based models, combining these two approaches in a cascade 
structure has recently attracted considerable attention in the literature. The cascade structure, as 
shown in Fig. 1, illustrates a general form of such a combination, where a kinematically feasible 
trajectory planning module is embedded in the second level, and a dynamic-based controller tracks 
the trajectory in the third level.  
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Figure 5: Cascade motion planning and control scheme. 

The goal in this research was to propose a novel trajectory planning framework:  
1. minimizing the trajectory tracking error (position, velocity, and acceleration) 
2. transforming motion constraints into the form of vehicle configuration (states) 

limitations (road boundaries, limitations on velocity, etc.) 
3. considering the limitations on control inputs of a vehicle (steering angle, 

acceleration) 
4. not presuming linearity of the trajectory planner and not restricting the input space 

and trajectory to any certain parametric class of functions, e.g. Bezier curves, splines, and 
polynomials which indeed avoid the sub-optimal solution. 

We started with defining a novel problem formulation which minimizes the tracking error 
subject to the car-like vehicle model as shown in Fig. 6.  

 
Figure 6: Car-like vehicle model. 
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This problem is formulated as  

 
In the cost function, the terms 𝑜𝑜𝑣𝑣𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑣𝑣2  and 𝑜𝑜𝑎𝑎𝑣𝑣𝑣𝑣𝑒𝑒𝑣𝑣𝑒𝑒𝑎𝑎𝑎𝑎𝑡𝑡𝑣𝑣𝑣𝑣𝑎𝑎2  guarantee the continuity of the 

velocity and the acceleration by tracking the first and the second derivatives of reference trajectory. 
Moreover, it allows us to extract the optimal control 𝑜𝑜∗(𝑡𝑡) since the control inputs are appeared 
explicitly in the cost function. We assumed that the reference trajectory is given by a higher 
planning module, which is called path planner in the literature. The variational approach is used to 
solve the optimization and the corresponding optimal control law is obtained. The optimal 
trajectory and control inputs are found by solving a set of two-point boundary value (TPBV) 
nonlinear differential equations numerically. The proposed framework can track any arbitrary 
reference with continuous acceleration profile, which is shown in the simulation part. More 
detailed information about the problem formulation can be found in [6]. At the end, we evaluated 
the performance of the proposed framework in two scenarios of lane changing and multi-curvature 
road which verified the success of this framework.  

We expanded our trajectory planning framework by consideration of mechanical and physical 
constraints of the vehicle, and boundaries of the road in the form of state and control inequality 
constraints. Thus, the problem formulation expanded as  

 
Fig. 3, 4, and 5 illustrate the performance of the proposed framework in a multi-curve road 

scenario, and the constraint and unconstraint planning techniques are also compared.  
 

 
Figure 7: Optimal vehicle trajectory. 
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Figure 8: Multi-curve road scenario: (a) heading angle: 𝜃𝜃∗(𝑡𝑡) and 𝜃𝜃𝑎𝑎(𝑡𝑡), (b) velocity: 𝑣𝑣∗(𝑡𝑡) and 𝑣𝑣𝑎𝑎(𝑡𝑡). 

Fig. 3 illustrates the vehicle trajectory, which satisfies the boundary conditions of 𝑥𝑥(𝑡𝑡) and 
𝑦𝑦(𝑡𝑡). It can be seen that the tracking error converges to zero after 10 seconds. The transient shows 
that the vehicle cannot instantly track the reference trajectory due to the error (initial velocity and 
heading angle errors) between the initial configuration of the vehicle and the reference trajectory. 
Moreover, the tracking error takes longer to become zero compared to the case that there is no 
constraint on states and control inputs.  

In Fig. 4, heading angle and velocity are shown. As demonstrated in Fig. 4 (b), velocity 
satisfies the constraints. Fig. 6 illustrates the optimal control inputs, steering angle and 
acceleration. As it can be seen in Fig. 6, the controller selects the lower bound as the optimal point 
in some in-stances.  
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Figure 9: Optimal control inputs (multi-curve road scenario): (a) steering angle: 𝜙𝜙∗(𝑡𝑡) 𝑎𝑎𝑛𝑛𝑛𝑛 𝜙𝜙𝑎𝑎(𝑡𝑡), (b) acceleration: 𝑎𝑎∗(𝑡𝑡) 
and 𝑎𝑎𝑎𝑎(𝑡𝑡). 
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In our latest work, we obtained the analytical solution for the unconstrained problem by 
applying the input-output linearization technique. The results show more than 380% cost 
function value reduction in analytical case ( [6], [7], and [8]). 

 
Figure 10: Comparison of analytical and numerical methods. 
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5. A Collision Avoidance System with Fuzzy Danger Level Detection  

In this study, [15], a situation assessment (SA) algorithm is proposed which estimates the 
driver’s behavior and then interacts with the collision avoidance (CA) system to initiate earlier 
brake interventions when there is a threat. 

The goal is to develop a fuzzy danger-level detection system based on naturalistic driving data 
to perform risk assessment in lane-change scenarios, as well as implement a collision avoidance 
system to modify the driving performance and reduce the level of danger. We are studying driving 
data based upon 100 cars to identify common features in different near-crash/ crash scenarios. 
There are external factors such as slow or fast surrounding vehicles, unexpected exits or dark roads, 
as well as internal factors such as a distracted or drowsy driver contributing to a pre-crash event.  
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To ensure the safety of the vehicle in near-crash or crash scenarios, we propose a collision 
avoidance system for safe trajectory planning of lane change events in our study. This collision 
avoidance system modifies the lane change trajectory according to the danger level of the event. 
A fuzzy danger level detection system is designed using naturalistic near-crash events to determine 
a realistic risk level of a dangerous scenario. The training data is derived from the 100 car 
naturalistic driving data. The data is pre-processed, and the samples with missing or invalid data 
are removed. We chose two groups of sample data, as described by one of the features as “fault 
belong.” The driving behavior of the ego vehicles and surrounding vehicles are extracted, then 
statistic results are used to develop the structure of the fuzzy danger level detection model. The 
model is using to produce a danger level basis for the crash avoidance system by using the 
measurements of the ego vehicles: velocity, yaw rate, accelerations in lateral and longitudinal, also 
the surrounding vehicles’ relative distance and velocity. Afterward, as the figure show, a model 
predictive controller will adjust the safety-gap (SG) constrain and generates safe longitudinal and 
lateral trajectories for the lane change maneuver based on the computed danger level.  

Moreover, an additional feature in the proposed collision avoidance system is a fault 
determination classifier, which is trained by the naturalistic data to determines whether the subject 
vehicle or the surrounding vehicle is responsible for the near-crash/crash event. In this work, the 
problem is formulated as a classification task, and an Extreme Gradient Boosting algorithm is used 
for identifying the responsible driver who is at fault. The classifier is tested, and the results show 
that the technique can provide an additional feature as a fault belonging with high accuracy. The 
results of this classifier also can help to adjust the performance of the proposed collision avoidance 
system. 

 
Figure 11: Schematic diagram of the proposed system 

The system shows the ability to evaluate the driving behavior of the subject vehicle and 
provide a reasonable estimation of the danger of the maneuver, and the ability to plan the collision-
free trajectory according to the percentage of the danger-level to ensure the safety of the subject 
vehicle. The ability to evaluate the current driving scenario also could be used for monitoring for 
the operating company or the third party. One of the advantages of this data-driven model is its 
adaptive nature feeding the newer naturistic driving, which collected as time goes to fit the 
personalized needs of the subject vehicles. In the future study, the more complicated driving 
maneuver will be used in the study to enhance the performance of the proposed system. 



29 
 

References 

 
[15]  Z. Wang, S. Ramyar, S. M. Salaken, A. Homaifar and S. Nahavandi, "A Collision 

Avoidance System with Fuzzy Danger Level Detection," in Intelligent Vehicles 
Symposium (IV), 2017.  

 


	Project 2 Cover.pdf
	Project 2 Overview.pdf
	Project 2 Report Part 1_updated.pdf
	1. Introduction
	2. Prediction
	a. Trajectory Prediction Using Driver Models
	b. Decisive Features

	3. Control
	a. Model Predictive Control Using Lane Change Behavior Models


	Project 2 Report Part 2_updated.pdf
	INTRODUCTION
	References
	RESEARCHES UNDER PROJECT 2: DRIVER MODELS FOR BOTH HUMAN AND AUTONOMOUS VEHICLES
	1. Modeling Drivers’ Actions at Intersections

	References
	2. Personalized Automated Highway Driving System

	References
	3. A Simplified Matrix Formulation (SMF) for Sensitivity Analysis of Hidden Markov Models (HMMs)

	References
	4. Novel kinematic-based Framework for Autonomous Ground Vehicle Trajectory Planning Using the Variational Approach

	References
	5. A Collision Avoidance System with Fuzzy Danger Level Detection

	References




Accessibility Report


		Filename: 

		OhioProject2FinalReportv3.pdf




		Report created by: 

		NTL Digital Submissions, Librarian, ntldigitalsubmissions@dot.gov

		Organization: 

		National Transportation Library, Cataloging/Metadata




 [Personal and organization information from the Preferences > Identity dialog.]


Summary


The checker found no problems in this document.


		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0




Detailed Report


		Document



		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content



		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms



		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text



		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables



		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists



		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings



		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting






Back to Top


